Ex Vivo Treatment with a Novel Synthetic Aminoglycoside NB54 in Primary Fibroblasts from Rett Syndrome Patients Suppresses MECP2 Nonsense Mutations
نویسندگان
چکیده
BACKGROUND Nonsense mutations in the X-linked methyl CpG-binding protein 2 (MECP2) comprise a significant proportion of causative MECP2 mutations in Rett syndrome (RTT). Naturally occurring aminoglycosides, such as gentamicin, have been shown to enable partial suppression of nonsense mutations related to several human genetic disorders, however, their clinical applicability has been compromised by parallel findings of severe toxic effects. Recently developed synthetic NB aminoglycosides have demonstrated significantly improved effects compared to gentamicin evident in substantially higher suppression and reduced acute toxicity in vitro. RESULTS We performed comparative study of suppression effects of the novel NB54 and gentamicin on three MECP2 nonsense mutations (R294X, R270X and R168X) common in RTT, using ex vivo treatment of primary fibroblasts from RTT patients harboring these mutations and testing for the C-terminal containing full-length MeCP2. We observed that NB54 induces dose-dependent suppression of MECP2 nonsense mutations more efficiently than gentamicin, which was evident at concentrations as low as 50 µg/ml. NB54 read-through activity was mutation specific, with maximal full-length MeCP2 recovery in R168X (38%), R270X (27%) and R294X (18%). In addition, the recovered MeCP2 was translocated to the cell nucleus and moreover led to parallel increase in one of the most important MeCP2 downstream effectors, the brain derived neurotrophic factor (BDNF). CONCLUSION Our findings suggest that NB54 may induce restoration of the potentially functional MeCP2 in primary RTT fibroblasts and encourage further studies of NB54 and other rationally designed aminoglycoside derivatives as potential therapeutic agents for nonsense MECP2 mutations in RTT.
منابع مشابه
Influence of MECP2 gene mutation and X-chromosome inactivation on the Rett syndrome phenotype.
To date, approximately 200 different mutations in the MECP2 gene have been identified. We analyzed the entire coding sequence of the MECP2 gene and the X-chromosome inactivation pattern in 42 sporadic cases of Rett syndrome. Of the 42 patients, 30 had pathogenic mutations, including 14 different mutations: 9 missense mutations, 4 nonsense mutations, and 1 frameshift mutation. One was a novel mu...
متن کاملRett syndrome: a surprising result of mutation in MECP2.
The identification of mutations in the gene encoding methyl CpG binding protein 2 (MeCP2) in Rett syndrome represents a major advance in the field. The current model predicts that MeCP2 represses transcription by binding methylated CpG residues and mediating chromatin remodeling. A physical interaction between MeCP2, histone deacetylases and the transcriptional co-repressor Sin3A has been demon...
متن کاملFunctional consequences of Rett syndrome mutations on human MeCP2.
The neurodevelopmental disorder known as Rett syndrome has recently been linked to the methyl-CpG-binding transcriptional repressor, MeCP2. In this report we examine the consequences of these mutations on the function of MeCP2. The ability to bind specifically to methylated DNA and the transcription repression capabilities are tested, as well as the stability of proteins in vivo. We find that a...
متن کاملIsolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation
Rett syndrome (RTT) is a neurodevelopmental autism spectrum disorder that affects girls due primarily to mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). The majority of RTT patients carry missense and nonsense mutations leading to a hypomorphic MECP2, while null mutations leading to the complete absence of a functional protein are rare. MECP2 is an X-linked gene subject to ...
متن کاملThe MeCP2/YY1 interaction regulates ANT1 expression at 4q35: novel hints for Rett syndrome pathogenesis.
Rett syndrome is a severe neurodevelopmental disorder mainly caused by mutations in the transcriptional regulator MeCP2. Although there is no effective therapy for Rett syndrome, the recently discovered disease reversibility in mice suggests that there are therapeutic possibilities. Identification of MeCP2 targets or modifiers of the phenotype can facilitate the design of curative strategies. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011